每天都学一点

Kubernetes安装EFK教程(非存储持久化方式部署)

10 04月
作者:林健|分类:Kubernetes

1.简介

这里所指的EFK是指:ElasticSearch,Fluentd,Kibana

ElasticSearch

Elasticsearch是一个基于Apache Lucene™的开源搜索和数据分析引擎引擎,Elasticsearch使用Java进行开发,并使用Lucene作为其核心实现所有索引和搜索的功能。它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。Elasticsearch不仅仅是Lucene和全文搜索,它还提供如下的能力:

分布式的实时文件存储,每个字段都被索引并可被搜索;
分布式的实时分析搜索引擎;
可以扩展到上百台服务器,处理PB级结构化或非结构化数据。

在Elasticsearch中,包含多个索引(Index),相应的每个索引可以包含多个类型(Type),这些不同的类型每个都可以存储多个文档(Document),每个文档又有多个属性。索引 (index) 类似于传统关系数据库中的一个数据库,是一个存储关系型文档的地方。Elasticsearch 使用的是标准的 RESTful API 和 JSON。此外,还构建和维护了很多其他语言的客户端,例如 Java, Python, .NET, 和 PHP。

Fluentd

Fluentd是一个开源数据收集器,通过它能对数据进行统一收集和消费,能够更好地使用和理解数据。Fluentd将数据结构化为JSON,从而能够统一处理日志数据,包括:收集、过滤、缓存和输出。Fluentd是一个基于插件体系的架构,包括输入插件、输出插件、过滤插件、解析插件、格式化插件、缓存插件和存储插件,通过插件可以扩展和更好的使用Fluentd。

Kibana

Kibana是一个开源的分析与可视化平台,被设计用于和Elasticsearch一起使用的。通过kibana可以搜索、查看和交互存放在Elasticsearch中的数据,利用各种不同的图表、表格和地图等,Kibana能够对数据进行分析与可视化

2.下载需要用到的EFK的yaml文件

kubernetes的github

https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/fluentd-elasticsearch

温馨提示:
   此github有非存储持久化方式部署,需要存储持久化请修改现有的yaml

1583738200043

下载连接

mdkir /root/EFK
cd /root/EFK

wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/fluentd-elasticsearch/es-service.yaml

wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/fluentd-elasticsearch/es-statefulset.yaml

wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/fluentd-elasticsearch/fluentd-es-configmap.yaml

wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/fluentd-elasticsearch/fluentd-es-ds.yaml

wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/fluentd-elasticsearch/kibana-deployment.yaml

wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/fluentd-elasticsearch/kibana-service.yaml

或者使用easzlab的也可以

https://github.com/easzlab/kubeasz/tree/master/manifests/efk

温馨提示:
   此github,有非存储持久化部署方式,也有持久化部署方式。

1583738463965

下载连接地址:

wget https://raw.githubusercontent.com/easzlab/kubeasz/master/manifests/efk/es-without-pv/es-statefulset.yaml温馨提示:es-static-pv和es-dynamic-pv分别是静态pv和动太pv存储持久方案,如需要可参考,es-without-pv此文件夹是非存储持久方案

wget https://raw.githubusercontent.com/easzlab/kubeasz/master/manifests/efk/es-service.yamlwget https://raw.githubusercontent.com/easzlab/kubeasz/master/manifests/efk/fluentd-es-configmap.yamlwget https://raw.githubusercontent.com/easzlab/kubeasz/master/manifests/efk/fluentd-es-ds.yamlwget https://raw.githubusercontent.com/easzlab/kubeasz/master/manifests/efk/kibana-deployment.yamlwget https://raw.githubusercontent.com/easzlab/kubeasz/master/manifests/efk/kibana-service.yaml

3.下载EFK需要的镜像

yaml源文件需要的镜像及地址

elasticsearch:v7.4.2        quay.io/fluentd_elasticsearch/elasticsearch:v7.4.2fluentd:v2.8.0              quay.io/fluentd_elasticsearch/fluentd:v2.8.0kibana-oss:7.4.2            docker.elastic.co/kibana/kibana-oss:7.4.2温馨提示:因v7.4.2测试了几次都存在问题,elasticsearch一直重启报错,故更新为6.6.1elasticsearch:v6.6.1          quay.io/fluentd_elasticsearch/elasticsearch:v6.6.1fluentd-elasticsearch:v2.4.0  quay.io/fluentd_elasticsearch/fluentd_elasticsearch:v2.4.0kibana-oss:6.6.1              docker.elastic.co/kibana/kibana-oss:6.6.1

因不能上网,故在阿里云镜像上直接找到相对应的连接

elasticsearch:v6.6.1            registry.cn-hangzhou.aliyuncs.com/yfhub/elasticsearch:v6.6.1fluentd-elasticsearch:v2.4.0    registry.cn-hangzhou.aliyuncs.com/yfhub/fluentd-elasticsearch:v2.4.0kibana-oss:6.6.1                registry.cn-hangzhou.aliyuncs.com/yfhub/kibana-oss:6.6.1

使用docker pull把镜像拉下来

docker pull registry.cn-hangzhou.aliyuncs.com/yfhub/elasticsearch:6.6.1docker pull registry.cn-hangzhou.aliyuncs.com/yfhub/fluentd-elasticsearch:v2.4.0docker pull registry.cn-hangzhou.aliyuncs.com/yfhub/kibana-oss:6.6.1

把镜像打标签使之与yaml需要的一致

docker tag registry.cn-hangzhou.aliyuncs.com/yfhub/elasticsearch:6.6.1 quay.io/fluentd_elasticsearch/elasticsearch:v6.6.1docker tag registry.cn-hangzhou.aliyuncs.com/yfhub/fluentd-elasticsearch:v2.4.0  quay.io/fluentd_elasticsearch/fluentd_elasticsearch:v2.4.0docker tag registry.cn-hangzhou.aliyuncs.com/yfhub/kibana-oss:6.6.1 docker.elastic.co/kibana/kibana-oss:6.6.1

上传打标签前的节点

docker rmi registry.cn-hangzhou.aliyuncs.com/yfhub/elasticsearch:6.6.1docker rmi registry.cn-hangzhou.aliyuncs.com/yfhub/fluentd-elasticsearch:v2.4.0docker rmi registry.cn-hangzhou.aliyuncs.com/yfhub/kibana-oss:6.6.1

把镜像保存为tar,方便分发到其它的Node节点并导入

docker save -o elasticsearch-v6.6.1           quay.io/fluentd_elasticsearch/elasticsearch:v6.6.1docker save -o fluentd-elasticsearch-v2.4.0 quay.io/fluentd_elasticsearch/fluentd_elasticsearch:v2.4.0docker save -o kibana-oss-6.6.1               docker.elastic.co/kibana/kibana-oss:6.6.1

把打包的镜像传到其它节点

scp -r elasticsearch-v6.6.1 fluentd-elasticsearch-v2.4.0  kibana-oss-6.6.12 k8s-node02:/root/

**在Node02节点上导入镜像

docker load -i elasticsearch-v6.6.1 && docker load -i fluentd-elasticsearch-v2.4.0 && docker load -i kibana-oss-6.6.1

4.对kubernetes官方的EFK的yaml进行改动

es-service.yaml文件内容如下(温馨提示,带有叉的都是注释行,默认原文件可能是启用状态)

apiVersion: v1kind: Servicemetadata:  name: elasticsearch-logging  namespace: kube-system  labels:    k8s-app: elasticsearch-logging
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/name: "Elasticsearch"spec:  type: NodePort          #通过NodePort暴露端口,以便通过elasticsearch-head来连接elasticsearch查看  ports:
  - port: 9200
    protocol: TCP    targetPort: db  selector:    k8s-app: elasticsearch-logging

es-statefulset.yaml文件内容如下(温馨提示,带有叉的都是注释行,默认原文件可能是启用状态)

# RBAC authn and authzapiVersion: v1kind: ServiceAccountmetadata:  name: elasticsearch-logging  namespace: kube-system  labels:    k8s-app: elasticsearch-logging
    kubernetes.io/cluster-service: "true"            #此行是新添加
    addonmanager.kubernetes.io/mode: Reconcile---kind: ClusterRoleapiVersion: rbac.authorization.k8s.io/v1metadata:  name: elasticsearch-logging  labels:    k8s-app: elasticsearch-logging
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/cluster-service: "true"            #此行是新添加rules:- apiGroups:  - ""  resources:  - "services"  - "namespaces"  - "endpoints"  verbs:  - "get"---kind: ClusterRoleBindingapiVersion: rbac.authorization.k8s.io/v1metadata:  namespace: kube-system  name: elasticsearch-logging  labels:    k8s-app: elasticsearch-logging
    kubernetes.io/cluster-service: "true"          #此行是新添加
    addonmanager.kubernetes.io/mode: Reconcilesubjects:- kind: ServiceAccount  name: elasticsearch-logging  namespace: kube-system  apiGroup: ""roleRef:  kind: ClusterRole  name: elasticsearch-logging  apiGroup: ""---# Elasticsearch deployment itselfapiVersion: apps/v1kind: StatefulSetmetadata:  name: elasticsearch-logging  namespace: kube-system  labels:    k8s-app: elasticsearch-logging    version: v6.6.1
    kubernetes.io/cluster-service: "true"            #此行是新添加
    addonmanager.kubernetes.io/mode: Reconcilespec:  serviceName: elasticsearch-logging  replicas: 2  selector:    matchLabels:      k8s-app: elasticsearch-logging      version: v6.6.1  template:    metadata:      labels:        k8s-app: elasticsearch-logging        version: v6.6.1
        kubernetes.io/cluster-service: "true"        #此行是新添加    spec:      serviceAccountName: elasticsearch-logging      containers:      - image: quay.io/fluentd_elasticsearch/elasticsearch:v6.6.1        name: elasticsearch-logging        imagePullPolicy: IfNotPresent       #默认为Always,修改为IfNotPresent        resources:
          # need more cpu upon initialization, therefore burstable class          limits:            cpu: 1000m
         #   memory: 3Gi          requests:            cpu: 100m
         #   memory: 3Gi        ports:        - containerPort: 9200          name: db          protocol: TCP        - containerPort: 9300          name: transport          protocol: TCP
       # livenessProbe:
       #   tcpSocket:
       #     port: transport
       #   initialDelaySeconds: 5
       #   timeoutSeconds: 10
       # readinessProbe:
       #   tcpSocket:
       #     port: transport
       #   initialDelaySeconds: 5
       #   timeoutSeconds: 10        volumeMounts:        - name: elasticsearch-logging          mountPath: /data        env:        - name: "NAMESPACE"          valueFrom:            fieldRef:              fieldPath: metadata.namespace      volumes:      - name: elasticsearch-logging        emptyDir: {}
      # Elasticsearch requires vm.max_map_count to be at least 262144.
      # If your OS already sets up this number to a higher value, feel free
      # to remove this init container.      initContainers:      - image: alpine:3.6        command: ["/sbin/sysctl", "-w", "vm.max_map_count=262144"]        name: elasticsearch-logging-init        securityContext:          privileged: true

fluentd-es-ds.yaml文件内容如下,fluentd-es-configmap.yaml文件内容保持不变(温馨提示,带有叉的都是注释行,默认原文件可能是启用状态)

apiVersion: v1kind: ServiceAccountmetadata:  name: fluentd-es  namespace: kube-system  labels:    k8s-app: fluentd-es
    addonmanager.kubernetes.io/mode: Reconcile---kind: ClusterRoleapiVersion: rbac.authorization.k8s.io/v1metadata:  name: fluentd-es  labels:    k8s-app: fluentd-es
    addonmanager.kubernetes.io/mode: Reconcilerules:- apiGroups:  - ""  resources:  - "namespaces"  - "pods"  verbs:  - "get"  - "watch"  - "list"---kind: ClusterRoleBindingapiVersion: rbac.authorization.k8s.io/v1metadata:  name: fluentd-es  labels:    k8s-app: fluentd-es
    addonmanager.kubernetes.io/mode: Reconcilesubjects:- kind: ServiceAccount  name: fluentd-es  namespace: kube-system  apiGroup: ""roleRef:  kind: ClusterRole  name: fluentd-es  apiGroup: ""---apiVersion: apps/v1kind: DaemonSetmetadata:  name: fluentd-es-v2.4.0  namespace: kube-system  labels:    k8s-app: fluentd-es    version: v2.4.0
    addonmanager.kubernetes.io/mode: Reconcilespec:  selector:    matchLabels:      k8s-app: fluentd-es      version: v2.4.0  template:    metadata:      labels:        k8s-app: fluentd-es        version: v2.4.0
      # This annotation ensures that fluentd does not get evicted if the node
      # supports critical pod annotation based priority scheme.
      # Note that this does not guarantee admission on the nodes (#40573).      annotations:
        seccomp.security.alpha.kubernetes.io/pod: 'docker/default'    spec:      priorityClassName: system-node-critical      serviceAccountName: fluentd-es      containers:      - name: fluentd-es        image: quay.io/fluentd_elasticsearch/fluentd_elasticsearch:v2.4.0  #镜像地址一定记得修改        env:        - name: FLUENTD_ARGS          value: --no-supervisor -q        resources:          limits:            memory: 500Mi          requests:            cpu: 100m            memory: 200Mi        volumeMounts:        - name: varlog          mountPath: /var/log        - name: varlibdockercontainers          mountPath: /var/lib/docker/containers          readOnly: true        - name: config-volume          mountPath: /etc/fluent/config.d
       # ports:
       # - containerPort: 24231
        #  name: prometheus
        #  protocol: TCP
        #livenessProbe:
         # tcpSocket:
         #   port: prometheus
         # initialDelaySeconds: 5
         # timeoutSeconds: 10
        #readinessProbe:
         # tcpSocket:
         #   port: prometheus
         # initialDelaySeconds: 5
         # timeoutSeconds: 10      terminationGracePeriodSeconds: 30      volumes:      - name: varlog        hostPath:          path: /var/log      - name: varlibdockercontainers        hostPath:          path: /var/lib/docker/containers      - name: config-volume        configMap:          name: fluentd-es-config-v0.2.0

kibana-deployment.yaml文件内容如下(温馨提示,带有叉的都是注释行,默认原文件可能是启用状态)

apiVersion: apps/v1kind: Deploymentmetadata:  name: kibana-logging  namespace: kube-system  labels:    k8s-app: kibana-logging
    addonmanager.kubernetes.io/mode: Reconcilespec:  replicas: 1
  selector:    matchLabels:      k8s-app: kibana-logging  template:    metadata:      labels:        k8s-app: kibana-logging      annotations:
        seccomp.security.alpha.kubernetes.io/pod: 'docker/default'
    spec:      containers:
      - name: kibana-logging        image: docker.elastic.co/kibana/kibana-oss:6.6.1   #镜像连接地址        resources:
          # need more cpu upon initialization, therefore burstable class          limits:            cpu: 1000m          requests:            cpu: 100m        env:
          #- name: ELASTICSEARCH_HOSTS
          - name: ELASTICSEARCH_URL            value: http://elasticsearch-logging:9200
          #- name: SERVER_NAME
          #  value: kibana-logging
          - name: SERVER_BASEPATH            value: ""    #kibana是通过nodeport方式进行访问,请把value的值改为此
            #value: /api/v1/namespaces/kube-system/services/kibana-logging/proxy
         # - name: SERVER_REWRITEBASEPATH
         #   value: "false"
        ports:
        - containerPort: 5601
          name: ui          protocol: TCP
        #livenessProbe:            #livenessProbe和readinessProbe检测可以注释,不需要启用
         # httpGet:
         #   path: /api/status
         #   port: ui
         # initialDelaySeconds: 5
         # timeoutSeconds: 10
        #readinessProbe:
          #httpGet:
          #  path: /api/status
          #  port: ui
          #initialDelaySeconds: 5
          #timeoutSeconds: 10

kibana-service.yaml文件内容如下(温馨提示,带有叉的都是注释行,默认原文件可能是启用状态)

apiVersion: v1kind: Servicemetadata:  name: kibana-logging  namespace: kube-system  labels:    k8s-app: kibana-logging
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/name: "Kibana"spec:  type: NodePort        #添加此选项,以便能直接通过IP:端口的方式访问kibana  ports:
  - port: 5601
    protocol: TCP    targetPort: ui  selector:    k8s-app: kibana-logging

5.应用EFK的yaml所有文件,我把EFK需要的所有文件都保存到一个文件夹/root/EFK

kubectl apply -f /root/EFK/

6.查看svc暴露的端口

1583767446857

7.可以在谷歌浏览器安装elastisearch-head连接并查看

可以在谷歌浏览器安装elastisearch-head连接并查看elasticsearch是否能正常连接上或有没有报错等之类

1583767583248

8.通过NodePort暴露kibana的service端口来访问kibana

1583767987088

1583767963928

1583768014084

1583768057606


    浏览1 评论0
    返回
    目录
    返回
    首页
    Kubernetes部署Prometheus+Grafana(非存储持久化方式部署) Kubernets---高可用安装

    发表评论